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High-Precision Computation and Reproducibility 

David H Bailey, Lawrence Berkeley National Lab, USA 
This talk is available at:  

http://www.davidhbailey.com/dhbtalks/dhb-icerm.pdf 
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Progress of scientific supercomputers: 
Data from the Nov 2012 Top500 list 



3 

Large-scale parallel computing and 
numerical reproducibility 

·  As numerical computations are ported from single-processor systems to 
large-scale, highly parallel supercomputers, problems are typically scaled 
up by factors of millions. 

·  As a result, computations that previously had satisfactory numerical 
behavior now may be highly ill-conditioned, and results are reproducible 
to fewer digits (or none at all). 

·  Computational scientists who develop codes are, in most cases, not 
experts in numerical analysis and may not realize the potential difficulties. 

 
Example:  Colleagues at LBNL who work with a large code for analyzing 
Large Hadron Collider data recently reported that when they merely changed 
the floating-point library (for transcendental functions, etc.), they observed 
cases where particle events no longer occurred. 

§  Do their results have any numerical significance at all in such cases? 
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Large-scale parallel computing and 
numerical reproducibility 

·  Porting a code to a parallel computer inevitably destroys any specified 
order of operations, particularly for global summations.  As a result, digit-
for-digit reproducibility cannot be guaranteed in most cases. 

·  Even after the port to the parallel system, the order of operation changes 
when the number of processors used is changed, as is very often done by 
programmers dealing with batch queues. 

 
One potential solution:   
Perform global summations using double-double arithmetic, then reduce 
back to double precision for final results. 
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Aren’t 64 bits enough? 

Almost all scientific computers (from PCs to supercomputers) now feature 
IEEE-754 64-bit floating-point arithmetic. However, for a growing body of 
numerical algorithms and applications, 64 bits aren’t enough: 

·  Ill-conditioned linear systems. 
·  Large summations, with cancellations. 
·  Long-time, iterative simulations. 
·  Large-scale simulations. 
·  Resolving small-scale phenomena. 
·  Studies in experimental mathematics – hundreds or thousands of digits. 
Using high-precision arithmetic is often the easiest way to solve numerical 

problems, even more sophisticated algorithmic solutions are possible. 
 
The fact that high-precision arithmetic is not only useful, but is in fact 

essential for some important applications, has encountered surprisingly 
strong resistance from several quarters.  
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Innocuous-looking example where 
standard precision is inadequate 

Find a polynomial to fit the data (1, 1048579, 16777489, 84941299, 268501249, 
655751251, 1360635409, 2523398179, 4311748609) for arguments 0, 1, …, 8.  

The usual approach is to solve the linear system: 

using Matlab, Linpack or LAPACK.  However, computation with 64-bit floating-point 
arithmetic fails to find the correct result in this instance.  
 
However, if the Linpack routines are converted to use double-double arithmetic (31-
digit accuracy), the above computation quickly produces the correct polynomial: 
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Algorithm changes versus double-double: 
Double-double is the pragmatic choice 

·  The result on the previous page can be obtained with double precision 
using Lagrange interpolation or the Demmel-Koev algorithm.   

·  But few computational scientists, outside of expert numerical analysts, are 
aware of these schemes – most people use Linpack or home-grown code. 

·  Besides, even these schemes fail for higher-degree problems, for example:  
§  (1, 134217731, 8589938753, 97845255883, 549772595201, 2097396156251, 

6264239146561, 15804422886323, 35253091827713, 71611233653971, 
135217729000001, 240913322581691, 409688091758593). 

§  This is generated by: 

In contrast, a straightforward Linpack scheme, implemented with double-
double arithmetic, works fine for this and a wide range of similar problems. 
 
Which is a more practical solution to a numerical anomaly? 
(a)  modify an existing code to use double-double, or  
(b)  implement a new scheme from scratch?   
With new easy-to-use double-double software, choice (a) is much preferable. 

f(x) = 1 + 134217729x6 + x

12 = 1 + (227 + 1)x6 + x

12
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Free software for high-precision 
computation 

·  ARPREC.  Arbitrary precision, with many algebraic and transcendental functions. 
High-level interfaces for C++ and Fortran-90 make code conversion easy.  
Available at http://crd.lbl.gov/~dhbailey/mpdist. 

·  GMP.  Produced by a volunteer effort and is distributed under the GNU license by 
the Free Software Foundation.  Available at http://gmplib.org. 

·  MPFR.  C library for multiple-precision floating-point computations with exact 
rounding, based on GMP.  Available at http://www.mpfr.org. 

·  MPFR++.  High-level C++ interface to MPFR.  Available at  
 http://perso.ens-lyon.fr/nathalie.revol/software.html. 

·  GMPFRXX.  Similar to MPFR++.  Available at  
 http://math.berkeley.edu/~wilken/code/gmpfrxx. 

·  MPFUN90.  Similar to ARPREC, but is written entirely in Fortran-90 and provides 
only a Fortran-90 interface. Available at http://crd.lbl.gov/~dhbailey/mpdist. 

·  QD.  This package perform “double-double” (approx. 31 digits) and “quad-
double” (approx. 62 digits) arithmetic.  C++ and Fortran-90 high-level interfaces 
makes code conversion easy. Available at http://crd.lbl.gov/~dhbailey/mpdist. 

All of these packages greatly increase run time – from ~5X for double-double to 
~1000X for arbitrary precision with 1000 digits. 
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Berkeley’s CORVETTE project 

·  CORVETTE: Correctness Verification and Testing of Parallel Programs 
·  Tools to find bugs in hybrid (conventional/GPU) and large-scale systems. 
·  One key component:  numerical reliability 

§  Tools to easily test the level of numerical accuracy of an application. 
§  Tools to delimit the portions of code that are the principal sources of 

inaccuracy. 
§  Tools to ameliorate numerical difficulties when they are uncovered, including 

usage of double-double or higher precision arithmetic. 
§  Tools to navigate through a hierarchy of precision levels (half, double, 

double-double, higher). 



10 

Some applications where 
high-precision arithmetic is essential 

·  Planetary orbit calculations (32 digits). 
·  Supernova simulations (32-64 digits). 
·  Climate modeling (32 digits). 
·  Coulomb n-body atomic system simulations (32-120 digits). 
·  Schrodinger solutions for lithium and helium atoms (32 digits). 
·  Electromagnetic scattering theory (32-100 digits). 
·  Scattering amplitudes of quarks, gluons and bosons (32 digits). 
·  Discrete dynamical systems (32 digits). 
·  Theory of nonlinear oscillators (64 digits). 
·  Detecting “strange” nonchaotic attractors (32 digits). 
·  The Taylor algorithm for ordinary differential equations (100-550 digits). 
·  Ising integrals from mathematical physics (100-1000 digits). 
·  Other examples from experimental mathematics (100-20,000 digits). 
 
For details and references, see: 
David H. Bailey, Roberto Barrio, and Jonathan M. Borwein, "High precision computation: Mathematical 
physics and dynamics," Applied Mathematics and Computation, vol. 218 (2012), pg. 10106-10121. 
http://www.davidhbailey.com/dhbpapers/hpmpd.pdf 
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Long-term planetary orbits 

·  Researchers have recognized for centuries that 
planetary orbits exhibit chaotic behavior: 
§  “The orbit of any one planet depends on the combined 

motions of all the planets, not to mention the actions of 
all these on each other.  To consider simultaneously all 
these causes of motion and to define these motions by 
exact laws allowing of convenient calculation exceeds, 
unless I am mistaken, the forces of the entire human 
intellect.”  [Isaac Newton, Principia, 1687] 

·  Long-term simulations of planetary orbits using double 
precision do fairly well for long periods, but then fail at 
certain key junctures. 

·  Researchers have found that double-double or quad-
double arithmetic is required to avoid severe 
inaccuracies, even if other techniques are employed 
to reduce numerical error. 

G. Lake, T. Quinn and D. C. Richardson, “From Sir Isaac to the Sloan survey: Calculating the structure and 
chaos due to gravity in the universe,” Proc. of the 8th ACM-SIAM Symp. on Discrete Algorithms, 1997, 1-10."



12 

Supernova simulations 

·  Researchers at LBNL have used quad-
double arithmetic to solve for non-local 
thermodynamic equilibrium populations of 
iron and other atoms in the atmospheres of 
supernovas. 

·  Iron may exist in several species, so it is 
necessary to solve for all species 
simultaneously. 

·  Since the relative population of any state 
from the dominant state is proportional to 
the exponential of the ionization energy, 
the dynamic range of these values can be 
very large. 

·  The quad-double portion now dominates 
the entire computation. 

P. H. Hauschildt and E. Baron, “The Numerical Solution of the Expanding Stellar Atmosphere Problem,” 
Journal Computational and Applied Mathematics, vol. 109 (1999), pg. 41-63. 
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Climate modeling: high-precision 
arithmetic for reproducibility 

·  Climate and weather simulations are 
fundamentally chaotic – if microscopic 
changes are made to the current state, 
soon the future state is quite different. 

·  In practice, computational results are 
altered even if minor changes are 
made to the code or the system. 

·  This numerical variation is a major 
nuisance for code maintenance. 

·  He and Ding of LBNL found that by 
using double-double arithmetic to 
implement a key inner product loop, 
most of this numerical variation 
disappeared. 

Y. He and C. Ding, “Using Accurate Arithmetics to Improve Numerical Reproducibility and Stability in Parallel 
Applications,” Journal of Supercomputing, vol. 18, no. 3 (Mar 2001), pg. 259-277. 
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Coulomb n-body atomic system 
simulations 

·  Alexei Frolov of Queen’s University in Canada has used high-precision 
arithmetic to solve a generalized eigenvalue problem that arises in 
Coulomb n-body interactions. 

·  Matrices are typically 5,000 x 5,000 and are very nearly singular. 
·  Computations typically involve massive cancellation, and high-precision 

arithmetic must be employed to obtain numerically reproducible results. 
·  Frolov has also computed elements of the Hamiltonian matrix and the 

overlap matrix in four- and five-body systems. 
·  These computations typically require 120-digit arithmetic. 
 
“We can consider and solve the bound state few-body problems which have 

been beyond our imagination even four years ago.” – Frolov 
 
 
A. M. Frolov and DHB, “Highly Accurate Evaluation of the Few-Body Auxiliary Functions and Four-Body 

Integrals,” Journal of Physics B, vol. 36, no. 9 (14 May 2003), pg. 1857-1867. 
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Error bounds in Chebyshev-Sobolev: 
double vs high precision 
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Behavior of the theoretical error bounds (T4 a backward error bound and 
T5 for the running error bound) and the relative error in the double- and 
higher-precision evaluation of the Chebyshev-Sobolev approximation of 
degree 50 of the function f(x) = (x+1)2 sin(4x), where the discrete Sobolev 
measure have one mass point (c = 1) up to first derivative in the discrete 
part of the inner product.  
 
R. Barrio and S. Serrano, “Generation and evaluation of orthogonal polynomials in discrete Sobolev spaces 
II. Numerical stability, J. Comput. Appl. Math., vol. 181 (2005), pg. 299-320. 
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Taylor’s method for the solution of ODEs 

Taylor’s method is one of the oldest numerical schemes for solving ODEs, but in 
recent years has re-emerged as the method of choice in the computational dynamics 
community because of speed to convergence. 
 
Consider the initial value problem y’ = f(t, y).  The solution at time t = ti is: 

y(t0) =: y0,

y(ti) ' yi�1 + f(ti�1, yi�1)hi + · · · +
1
n!

dn�1f(ti�1, yi�1)
dtn�1

hn
i

=: yi

The Taylor coefficients here may be found using automatic differentiation methods. 
 
One significant advantage with Taylor’s method is that it can be easily implemented 
using high-precision arithmetic.  When this is done, Taylor’s method typically gives 
superior results, compared with other available schemes. 
 
A. Abad, R. Barrio, F. Blesa and M. Rodriguez, “TIDES: a Taylor series Integrator for Differential EquationS,” 
preprint, 2010. 
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Taylor’s method with high-precision 
arithmetic 
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Numerical integration of the L25-R25 unstable periodic orbit for the Lorenz model 
during 16 time periods using the TIDES code with 300 digits, and 1 time periods using 
double precision. 
 
DHB, R. Barrio and J. M. Borwein, “High precision computation: Mathematical physics and dynamics,” Applied 
Mathematics and Computation, vol. 218 (2012), pg. 10106-10121. 
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Computing the “skeleton” of periodic 
orbits 
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Symmetric periodic orbits (m denotes the multiplicity of the periodic orbit) in the most 
chaotic zone of the (7+2) ring problem using double (A) and quadruple (B) precision. 
  
R. Barrio and F. Blesa, “Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems,” 
Chaos, Solitons and Fractals, vol. 41 (2009), 560-582. 
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Fractal properties of Lorenz attractors: 
using high-precision to “zoom in” 

On the first plot, the intersection of an arbitrary trajectory on the Lorenz attractor with the 
section z = 27. The plot shows a rectangle in the x-y plane.  All later plots zoom in on a tiny 
region (too small to be seen by the unaided eye) at the center of the red rectangle of the 
preceding plot to show that what appears to be a line is in fact not a line.  Very high precision 
(hundreds of digits) arithmetic is required for these results. "
"
1. D. Viswanath, “The fractal property of the Lorenz attractor,” Journal of Physics D, vol. 190 (2004), 115-128."
2. D. Viswanath and S. Sahutoglu, “Complex singularities and the Lorenz attractor,” SIAM Review, to appear. 
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Lions-Mercer iterations 

The Lions-Mercer iteration, also known as the Douglas-Rachford or Feinup iteration, 
is defined by the procedure: reflect, reflect and average: 

x 7! T (x) :=
x + RA (RB(x))

2
In the simple 2-D case of a horizontal line of height α, we obtain the explicit iteration:  

xn+1 := cos ✓n, yn+1 := yn + ↵� sin ✓n, (✓n := arg zn)

For 0 < α < 1, spiraling is ubiquitous:  (α = 0.95 on left, and 1.0 on right): 
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Exploring iterations using Cinderella 

Iterations such as this, as well as many other graphical phenomena, may be 
explored using the Cinderella online tool:   http://www.cinderella.de. 

Two applets have been defined, working with Cinderella, for exploring Lions-
Mercer iterations: 

A1. http://users.cs.dal.ca/∼jborwein/reflection.html 
A2. http://users.cs.dal.ca/∼jborwein/expansion.html 
 
For Applet A1, we observed that (see graphic on next slide):  
·  As long as the iterate is outside the unit circle the next point is always 

closer to the origin; 
·  Once inside the circle the iterate never leaves; 
·  The angle now oscillates to zero and the trajectory hence converges 

to(1,0). 
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Iterations with Applet A1 
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Iterations with Applet A2:  
Double vs multiple precision 



24 

Experimental math: Discovering new 
mathematical results by computer 

·  Compute various mathematical entities (limits, infinite series sums, 
definite integrals) to high precision, typically 100-1000 digits. 

·  Use algorithms such as PSLQ to recognize these entities in terms of well-
known mathematical constants. 

·  When results are found experimentally, seek to find formal mathematical 
proofs of the discovered relations. 

Many results have recently been found using this methodology, both in pure 
mathematics and in mathematical physics. 

 

“If mathematics describes an objective world just like physics, there is no 
reason why inductive methods should not be applied in mathematics just 
the same as in physics.” – Kurt Godel 

Mathematics Computer 
science 

Scientific 
computing Mathematics 
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The PSLQ integer relation algorithm 

Let (xn) be a given vector of real numbers.  An integer relation algorithm 
finds integers (an) such that  

1.  H. R. P. Ferguson, DHB and S. Arno, “Analysis of PSLQ, An Integer Relation Finding Algorithm,” 
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369. 
2.  DHB and D. J. Broadhurst, “Parallel Integer Relation Detection: Techniques and Applications,” 
Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736. 

(or within “epsilon” of zero, where epsilon = 10-p and p is the precision).  
 
At the present time the “PSLQ” algorithm of mathematician-sculptor 
Helaman Ferguson is the most widely used integer relation algorithm.  It 
was named one of ten “algorithms of the century” by Computing in Science 
and Engineering. 
 
Integer relation detection requires very high precision (at least n*d digits, 
where d is the size in digits of the largest ak), both in the input data and in 
the operation of the algorithm. 

a1x1 + a2x2 + · · · + anxn = 0
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PSLQ, continued 

·  PSLQ constructs a sequence of integer-valued matrices Bn that reduces 
the vector y = x * Bn, until either the relation is found (as one of the 
columns of Bn), or else precision is exhausted. 

·  At the same time, PSLQ generates a steadily growing bound on the size 
of any possible relation. 

·  When a relation is found, the size of smallest entry of the y vector 
suddenly drops to roughly “epsilon” (i.e. 10-p, where p is the number of 
digits of precision). 

·  The size of this drop can be viewed as a “confidence level” that the 
relation is real and not merely a numerical artifact -- a drop of 20+ orders 
of magnitude almost always indicates a real relation. 

 
Several efficient variants of PSLQ are available: 
·  2-level and 3-level PSLQ:  performs almost all PSLQ iterations with only 

double precision, updating full-precision arrays as needed.  Hundreds of 
times faster than the original full-precision PSLQ algorithm. 

·  Multi-pair PSLQ:  dramatically reduces the number of iterations required.  
Designed for parallel system, but runs faster even on 1 CPU. 
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Decrease of log10(min |yi|) in multipair 
PSLQ run 
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PSLQ discovery: 
The BBP formula for Pi 

In 1996, this new formula for π was found using a PSLQ program: 

This formula permits one to compute binary (or hexadecimal) digits of π 
beginning at an arbitrary starting position, using a very simple scheme that 
can run on any system, using only standard 64-bit or 128-bit arithmetic. 
 
Recently it was proven that no base-n formulas of this type exist for π, 
except n = 2m. 
 
 
 
1.  DHB, P. B. Borwein and S. Plouffe, “On the rapid computation of various polylogarithmic constants,” 
Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913. 
2.  J. M. Borwein, W. F. Galway and D. Borwein, “Finding and excluding b-ary Machin-type BBP formulae,” 
Canadian Journal of Mathematics, vol. 56 (2004), pg 1339-1342. 
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High-precision tanh-sinh quadrature 

Given f(x) defined on (-1,1), define g(t) = tanh (π/2 sinh t).  Then setting x = g(t) 
yields 

where xj = g(hj) and wj = g’(hj).   Since g’(t) goes to zero very rapidly for large t, the 
product  f(g(t)) g’(t)  typically is a nice bell-shaped function for which the Euler-
Maclaurin formula implies that the simple summation above is remarkably accurate.  
Reducing h by half typically doubles the number of correct digits. 
 
For our applications, we have found that tanh-sinh is the best general-purpose 
integration scheme for functions with vertical derivatives or singularities at 
endpoints, or for any function at very high precision (> 1000 digits).  Otherwise we 
use Gaussian quadrature. 
 
 
1.  DHB, X. S. Li and K. Jeyabalan, “A Comparison of Three High-Precision Quadrature Schemes,” 
Experimental Mathematics, vol. 14 (2005), no. 3, pg. 317-329. 
2.  H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical Integration,” Publications of RIMS, 
Kyoto University, vol. 9 (1974), pg. 721–741. 

⇥ 1

�1
f(x) dx =

⇥ ⇤

�⇤
f(g(t))g⇥(t) dt � h

N�

j=�N

wjf(xj),
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Ising integrals from mathematical 
physics 

We recently applied our methods to study three classes of integrals that 
arise in the Ising theory of mathematical physics – Dn and two others: 

where in the last line uk = t1 t2 … tk. 
 

DHB, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” Journal of Physics A: Mathematical 
and General, vol. 39 (2006), pg. 12271-12302. 
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Limiting value of Cn: 
What is this number? 

1000-digit numerical values, computed using this formula, approach a limit: 

What is this limit?  We copied the first 50 digits of this numerical value into 
the online Inverse Symbolic Calculator (ISC): 
http://ddrive.cs.dal.ca/~isc   or   http://carma-lx1.newcastle.edu.au:8087/ 

The result was: 

where γ denotes Euler’s constant. 

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . .

lim
n⇥⇤

Cn = 2e�2�

Key observation:  The Cn integrals can be converted to one-dimensional 
integrals involving the modified Bessel function K0(t):  

Cn =
2n

n!

Z 1

0
tKn

0 (t) dt
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Other Ising integral evaluations found 
using high-precision PSLQ 

D2 = 1/3
D3 = 8 + 4⇥2/3� 27 L�3(2)
D4 = 4⇥2/9� 1/6� 7�(3)/2
E2 = 6� 8 log 2
E3 = 10� 2⇥2 � 8 log 2 + 32 log2 2
E4 = 22� 82�(3)� 24 log 2 + 176 log2 2� 256(log3 2)/3

+16⇥2 log 2� 22⇥2/3

E5
?= 42� 1984 Li4(1/2) + 189⇥4/10� 74�(3)� 1272�(3) log 2

+40⇥2 log2 2� 62⇥2/3 + 40(⇥2 log 2)/3 + 88 log4 2
+464 log2 2� 40 log 2

where ζ is the Riemann zeta function and Lin(x) is the polylog function.  D2, D3 and 
D4 were originally provided to us by mathematical physicist Craig Tracy, who hoped 
that our tools could help identify D5. 
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The Ising integral E5 

We were able to reduce E5, which 
is a 5-D integral, to an extremely 
complicated 3-D integral. 

We computed this integral to 250-
digit precision, using a highly 
parallel, high-precision 3-D 
quadrature program.  Then we 
used a PSLQ program to discover 
the evaluation given on the 
previous page. 

We also computed D5 to 500 
digits, but were unable to identify 
it.  The digits are available if 
anyone wishes to further explore 
this question. 
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⇥
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Recursions in Ising integrals 

Consider the 2-parameter class of Ising integrals (which arises in QFT for odd k): 

After computing 1000-digit numerical values for all n up to 36 and all k up to 75 
(performed on a highly parallel computer system), we discovered (using PSLQ) 
linear relations in the rows of this array.  For example, when n = 3: 

Similar, but more complicated, recursions have been found for all n. 
1. DHB, D. Borwein, J. M. Borwein and R. Crandall, “Hypergeometric Forms for Ising-Class Integrals,” 
Experimental Mathematics, vol. 16 (2007), pg. 257-276. 

2. J. M. Borwein and B. Salvy, “A Proof of a Recursion for Bessel Moments,” Experimental Mathematics, vol. 17 
(2008), pg. 223-230. 

0 = C3,0 � 84C3,2 + 216C3,4

0 = 2C3,1 � 69C3,3 + 135C3,5

0 = C3,2 � 24C3,4 + 40C3,6

0 = 32C3,3 � 630C3,5 + 945C3,7

0 = 125C3,4 � 2172C3,6 + 3024C3,8

Cn,k =
4
n!

⌅ �

0
· · ·

⌅ �

0

1
�⇤n

j=1(uj + 1/uj)
⇥k+1

du1

u1
· · · dun

un
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Box integrals 

The following integrals appear in numerous arenas of math and physics: 

Bn(s) :=
⇤ 1

0
· · ·

⇤ 1

0

�
r2
1 + · · · + r2

n

⇥s/2
dr1 · · · drn

�n(s) :=
⇤ 1

0
· · ·

⇤ 1

0

�
(r1 � q1)2 + · · · + (rn � qn)2

⇥s/2
dr1 · · · drn dq1 · · · dqn

•  Bn(1) is the expected distance of a random point from the origin of n-cube. 
•  Δn(1) is the expected distance between two random points in n-cube. 
•  Bn(-n+2) is the expected electrostatic potential in an n-cube whose origin 
has a unit charge. 
•  Δn(-n+2) is the expected electrostatic energy between two points in a 
uniform n-cube of charged “jellium.” 
•  Recently integrals of this type have arisen in neuroscience – e.g., the 
average distance between synapses in a mouse brain. "
 
DHB, J. M. Borwein and R. E. Crandall, “Box integrals,” Journal of Computational and Applied Mathematics, 
vol. 206 (2007), pg. 196-208. 
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Evaluations of box integrals 

Here F is hypergeometric function; G is Catalan; Ti is Lewin’s inverse-tan function.  

n s Bn(s)
any even s ⇥ 0 rational, e.g., : B2(2) = 2/3
1 s ⇤= �1 1
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2 -4 � 1
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8
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⌅
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⌅
2)

2 1 1
3

⌅
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3 log(1 +
⌅

2)
2 3 7

5

⌅
2 + 3
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⌅

2)
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2+s 2F1

�
1
2 ,� s

2 ; 3
2 ;�1

⇥
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6
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3� 1

12�
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2
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2 arctan 1�

2
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2) + 3 Ti2(3� 2
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2 log
�
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3
⇥

3 1 1
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�
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⌅
3
⇥

3 3 2
5

⌅
3� 1

60� � 7
20 log

�
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⌅
3
⇥



37 

Elliptic function integrals 

The research with ramble integrals led us to study integrals of the form: 

I(n0, n1, n2, n3, n4) :=
Z 1

0
x

n0
K

n1(x)K 0n2(x)En3(x)E0n4(x)dx,

where K, K’, E, E’ are elliptic integral functions: 

K(x) :=
Z 1

0

dtp
(1� t

2)(1� x

2
t

2)

K

0(x) := K(
p

1� x

2)

E(x) :=
Z 1

0

p
1� x

2
t

2

p
1� t

2
dt

E

0(x) := E(
p

1� x

2)

J. Wan, “Moments of products of elliptic integrals,” Advances in Applied Mathematics, vol. 48 (2012), 
available at http://carma.newcastle.edu.au/jamesw/mkint.pdf."
DHB and J. M. Borwein, “Hand-to-hand combat with thousand-digit integrals,” Journal of Computational 
Science, vol. 3 (2012), pg. 77-86, http://www.davidhbailey.com/dhbpapers/combat.pdf. 
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Relations found among the I integrals 

Thousands of relations have been found among the I integrals.  For example, among 
the class with n0 <= D1 = 4 and n1 + n2 + n3 + n4 = D2 = 3 (a set of 100 integrals), 
we found that all can be expressed in terms of an integer linear combination of 8 
simple integrals.  For example: 

81
Z 1

0
x

3
K

2(x)E(x)dx

?= �6
Z 1

0
K

3(x)dx� 24
Z 1

0
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2
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Algebraic numbers in Poisson potential 
functions associated with lattice sums 

Lattice sums arising from the Poisson equation have been studied widely in 
mathematical physics and also in image processing.   
In two 2012 papers (below), we numerically discovered, and then proved, that 
for rational (x, y), the two-dimensional Poisson potential function satisfies 
 
 
 

The minimal polynomials for these α were found by PSLQ calculations, with 
the  (n+1)-long vector (1, α, α2, …, αn) as input, where α = exp (π φ2(x,y)).  
PSLQ returns the vector of integer coefficients (a0, a1, a2, …, an) as output. 
 
1. DHB, J. M. Borwein, R. E. Crandall and J. Zucker, “Lattice sums arising from the Poisson equation,” 
manuscript, http://www.davidhbailey.com/dhbpapers/PoissonLattice.pdf"
2. DHB and J. M. Borwein, “Compressed lattice sums arising from the Poisson equation: Dedicated to 
Professor Hari Sirvastava,” manuscript, http://www.davidhbailey.com/dhbpapers/Poissond.pdf. 

where α is an algebraic number, i.e., the root of an integer polynomial: 
0 = a0 + a1↵+ a2↵

2 + · · ·+ an↵
n

�

2

(x, y) =

1

⇡

2

X

m,n odd

cos(m⇡x) cos(n⇡y)

m

2

+ n

2

=

1

⇡

log↵
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Samples of minimal polynomials found 
by PSLQ 

k      Minimal polynomial for exp (8 π φ2(1/k,1/k))  

The minimal polynomial for exp (8 π φ2(1/32,1/32)) has degree 128, with 
individual coefficients ranging from 1 to over 1056.  This PSLQ computation 
required 10,000-digit precision.  See next slide. 

5 1 + 52↵� 26↵2 � 12↵3 + ↵4

6 1� 28↵+ 6↵2 � 28↵3 + ↵4

7 �1� 196↵+ 1302↵2 � 14756↵3 + 15673↵4 + 42168↵5 � 111916↵6 + 82264↵7

�35231↵8 + 19852↵9 � 2954↵10 � 308↵11 + 7↵12

8 1� 88↵+ 92↵2 � 872↵3 + 1990↵4 � 872↵5 + 92↵6 � 88↵7 + ↵8

9 �1� 534↵+ 10923↵2 � 342864↵3 + 2304684↵4 � 7820712↵5 + 13729068↵6

�22321584↵7 + 39775986↵8 � 44431044↵9 + 19899882↵10 + 3546576↵11

�8458020↵12 + 4009176↵13 � 273348↵14 + 121392↵15

�11385↵16 � 342↵17 + 3↵18

10 1� 216↵+ 860↵2 � 744↵3 + 454↵4 � 744↵5 + 860↵6 � 216↵7 + ↵8
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Degree-128 minimal polynomial for  
exp (8 π φ2(1/32,1/32)) 
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Formal proof versus high-precision 
verification 

·  Results such as those mentioned above must still be proven rigorously. 
·  However, strong numerical evidence is often a good impetus to find a 

proof – “discovery is 9/10 of the proof.” 
 
What is more firmly established? 
·  A formally proven result, whose proof required hundreds of pages, which 

crucially relies on tens of earlier results by other authors, and which has 
only been read in detail by a handful of mathematicians. 

·  A numerically discovered experimental identity, for which no known formal 
proof is available, but which has been checked to thousands of digits, 
independently on separate computers. 
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Cautionary Example 

These constants agree to 42 decimal digit accuracy, but are NOT equal: 

Richard Crandall has now shown that this integral is merely the first term of 
a very rapidly convergent series that converges to π/8: 

1.  D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein, “Ten Problems in Experimental Mathematics,” 
American Mathematical Monthly, vol. 113, no. 6 (Jun 2006), pg. 481-409 . 

 2.  R. E. Crandall, “Theory of ROOF Walks, 2007, available at http://people.reed.edu/~crandall/papers/
ROOF.pdf. 

⇥ �

0
cos(2x)

��

n=1

cos(x/n) dx =

0.392699081698724154807830422909937860524645434187231595926
�

8
=

0.392699081698724154807830422909937860524646174921888227621

�

8
=

��

m=0

⇤ �

0
cos[2(2m + 1)x]

�⇥

n=1

cos(x/n) dx
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Limitations of Mathematica and Maple 
for computational mathematics 

Mathematica or Maple is our first choice whenever symbolic or numeric 
computations are required.  However, both have their limitations. 
 
For example, in a study of Mordell-Tornheim-Witten sums (which arise in 
mathematical physics), we required high-precision numeric values of 
derivatives with respect to the order s of polylogarithm functions: 

Maple is not able to numerically evaluate these derivatives at all. 
 
Mathematica, when asked for 4000 digits, returned only 400 correct digits (at 
some arguments). 
 
 
DHB, J. M. Borwein and R. E. Crandall, “Computation and theory of extended Mordell-Tornheim-Witten sums,” 
Mathematics of Computation, to appear, 31 Jul 2012, http://www.davidhbailey.com/dhbpapers/BBC.pdf 

@Lis(z)

@s
, where Lis(z) =

1X

k=1

zk

ks
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Summary 

·  Large-scale, highly parallel computation places enormous stress on the 
numerical reliability and reproducibility of scientific computations. 

·  Double-double or higher precision arithmetic is a practical means of 
dealing with these numerical difficulties in many cases. 

·  Many real-world applications have now been identified that require high-
precision arithmetic. 

·  Some research studies, particularly in experimental mathematics and 
mathematical physics, require hundreds or even thousands of digits. 

·  Software is now available, mostly for free, to facilitate conversion.  In 
most cases, one need only change the type of variables that are to be 
treated as high-precision variables. 

 


