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High-Precision Computation and Reproducibility

David H Bailey, Lawrence Berkeley National Lab, USA
This talk is available at:
http://www.davidhbailey.com/dhbtalks/dhb-icerm.pdf
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Performance

Progress of scientific supercomputers: /*\l \
Data from the Nov 2012 Top500 list ’”\""

Projected Performance Development
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Large-scale parallel computing and ;\I .
numerical reproducibility TE”'”\""

BERKELEY LAB

¢ As numerical computations are ported from single-processor systems to
large-scale, highly parallel supercomputers, problems are typically scaled
up by factors of millions.

¢ As a result, computations that previously had satisfactory numerical
behavior now may be highly ill-conditioned, and results are reproducible
to fewer digits (or none at all).

¢ Computational scientists who develop codes are, in most cases, not
experts in numerical analysis and may not realize the potential difficulties.

Example: Colleagues at LBNL who work with a large code for analyzing
Large Hadron Collider data recently reported that when they merely changed
the floating-point library (for transcendental functions, etc.), they observed
cases where particle events no longer occurred.

= Do their results have any numerical significance at all in such cases?
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Large-scale parallel computing and /\l A
f[l"l"fl’l’ I

numerical reproducibility

¢ Porting a code to a parallel computer inevitably destroys any specified
order of operations, particularly for global summations. As a result, digit-
for-digit reproducibility cannot be guaranteed in most cases.

¢+ Even after the port to the parallel system, the order of operation changes
when the number of processors used is changed, as is very often done by

programmers dealing with batch queues.

One potential solution:
Perform global summations using double-double arithmetic, then reduce
back to double precision for final results.
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Aren’t 64 bits enough? fr} )

i

Almost all scientific computers (from PCs to supercomputers) now feature
IEEE-754 64-Dbit floating-point arithmetic. However, for a growing body of
numerical algorithms and applications, 64 bits aren’t enough:

lll-conditioned linear systems.

Large summations, with cancellations.

Long-time, iterative simulations.

Large-scale simulations.

Resolving small-scale phenomena.

Studies in experimental mathematics — hundreds or thousands of digits.

Using high-precision arithmetic is often the easiest way to solve numerical
problems, even more sophisticated algorithmic solutions are possible.

® & & o oo o

The fact that high-precision arithmetic is not only useful, but is in fact
essential for some important applications, has encountered surprisingly
strong resistance from several quarters.

L ________________________________________________________________________________________________________________________________________________________|
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Innocuous-looking example where . \
standard precision is inadequate m "

Find a polynomial to fit the data (1, 1048579, 16777489, 84941299, 268501249,
655751251, 1360635409, 2523398179, 4311748609) for arguments O, 1, ..., 8.

The usual approach is to solve the linear system:

n n n
Zk:1 Lk Zk:l 5’7% T Zk=1 xZJF ai B Zk:1 TEYk
i ZZ:1 Ty Zk:l 56‘2"“ 2221 xin 1 L n _ i 2221 TRk |

using Matlab, Linpack or LAPACK. However, computation with 64-bit floating-point
arithmetic fails to find the correct result in this instance.

However, if the Linpack routines are converted to use double-double arithmetic (31-
digit accuracy), the above computation quickly produces the correct polynomial:

f(x) =1+1048577z* +2° = 1+ (22° + 1)2* + 2°
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Algorithm changes versus double-double: ,\l \
Double-double is the pragmatic choice ff”””\""

¢+ The result on the previous page can be obtained with double precision
using Lagrange interpolation or the Demmel-Koev algorithm.

¢+ But few computational scientists, outside of expert numerical analysts, are
aware of these schemes — most people use Linpack or home-grown code.

¢ Besides, even these schemes fail for higher-degree problems, for example:

= (1,134217731, 8589938753, 97845255883, 549772595201, 2097396156251,
6264239146561, 15804422886323, 35253091827713, 71611233653971,
135217729000001, 240913322581691, 409688091758593).

= This is generated by:
f(z) =1+1342177292° + 1% = 1+ (2°7 + 1)2® + 22

In contrast, a straightforward Linpack scheme, implemented with double-
double arithmetic, works fine for this and a wide range of similar problems.

Which is a more practical solution to a numerical anomaly?

(a) modify an existing code to use double-double, or

(b) implement a new scheme from scratch?

With new easy-to-use double-double software, choice (a) is much preferable.

7



Free software for high-precision fr"\nl A

computation Z
P

¢ ARPREC. Arbitrary precision, with many algebraic and transcendental functions.
High-level interfaces for C++ and Fortran-90 make code conversion easy.
Available at http://crd.lbl.gov/~dhbailey/mpdist.

¢ GMP. Produced by a volunteer effort and is distributed under the GNU license by
the Free Software Foundation. Available at http://gmplib.org.

¢ MPFR. C library for multiple-precision floating-point computations with exact
rounding, based on GMP. Available at http://www.mpfr.org.

¢ MPFR++. High-level C++ interface to MPFR. Available at
http://perso.ens-lyon.fr/nathalie.revol/software.html.

¢ GMPFRXX. Similar to MPFR++. Available at
http://math.berkeley.edu/~wilken/code/gmpfrxx.

¢ MPFUNO90. Similar to ARPREC, but is written entirely in Fortran-90 and provides
only a Fortran-90 interface. Available at http://crd.lbl.gov/~dhbailey/mpdist.

¢ QD. This package perform “double-double” (approx. 31 digits) and “quad-
double” (approx. 62 digits) arithmetic. C++ and Fortran-90 high-level interfaces
makes code conversion easy. Available at http://crd.lbl.gov/~dhbailey/mpdist.

All of these packages greatly increase run time — from ~5X for double-double to
~1000X for arbitrary precision with 1000 digits.

L ________________________________________________________________________________________________________________________________________________________|
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Berkeley’s CORVETTE project receer) :

BERKELEY LAB

¢ CORVETTE: Correctness Verification and Testing of Parallel Programs
¢ Tools to find bugs in hybrid (conventional/GPU) and large-scale systems.

¢ One key component: numerical reliability
= Tools to easily test the level of numerical accuracy of an application.

= Tools to delimit the portions of code that are the principal sources of
inaccuracy.

= Tools to ameliorate numerical difficulties when they are uncovered, including
usage of double-double or higher precision arithmetic.

= Tools to navigate through a hierarchy of precision levels (half, double,
double-double, higher).
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Some applications where ,\l A
high-precision arithmetic is essential et )

BERKELEY LAB

Planetary orbit calculations (32 digits).

Supernova simulations (32-64 digits).

Climate modeling (32 digits).

Coulomb n-body atomic system simulations (32-120 digits).
Schrodinger solutions for lithium and helium atoms (32 digits).
Electromagnetic scattering theory (32-100 digits).

Scattering amplitudes of quarks, gluons and bosons (32 digits).
Discrete dynamical systems (32 digits).

Theory of nonlinear oscillators (64 digits).

Detecting “strange” nonchaotic attractors (32 digits).

The Taylor algorithm for ordinary differential equations (100-550 digits).
Ising integrals from mathematical physics (100-1000 digits).

Other examples from experimental mathematics (100-20,000 digits).

For details and references, see:

David H. Bailey, Roberto Barrio, and Jonathan M. Borwein, "High precision computation: Mathematical
physics and dynamics," Applied Mathematics and Computation, vol. 218 (2012), pg. 10106-10121.

http:/lIwww.davidhbailey.com/dhbpapers/hpmpd.pdf
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Long-term planetary orbits /:\n| ".’i}

BERKELEY LAB

¢ Researchers have recognized for centuries that
planetary orbits exhibit chaotic behavior:

=  “The orbit of any one planet depends on the combined
motions of all the planets, not to mention the actions of
all these on each other. To consider simultaneously all
these causes of motion and to define these motions by
exact laws allowing of convenient calculation exceeds,
unless | am mistaken, the forces of the entire human
intellect.” [Isaac Newton, Principia, 1687]

¢ Long-term simulations of planetary orbits using double

precision do fairly well for long periods, but then fail at
certain key junctures.

¢ Researchers have found that double-double or quad-
double arithmetic is required to avoid severe
inaccuracies, even if other techniques are employed
to reduce numerical error.

G. Lake, T. Quinn and D. C. Richardson, “From Sir Isaac to the Sloan survey: Calculating the structure and

chaos due to gravity in the universe,” Proc. of the 8th ACM-SIAM Symp. on Discrete Algorithms, 1997, 1-10.
|
11



Supernova simulations /\| ".’ﬁ

BERKELEY LAB

¢ Researchers at LBNL have used quad-
double arithmetic to solve for non-local
thermodynamic equilibrium populations of
iron and other atoms in the atmospheres of
supernovas.

¢+ Iron may exist in several species, so it is
necessary to solve for all species
simultaneously.

¢ Since the relative population of any state
from the dominant state is proportional to
the exponential of the ionization energy,
the dynamic range of these values can be
very large.

¢ The quad-double portion now dominates
the entire computation.

P. H. Hauschildt and E. Baron, “The Numerical Solution of the Expanding Stellar Atmosphere Problem,”
Journal Computational and Applied Mathematics, vol. 109 (1999), pg. 41-63.

12



Climate modeling: high-precision f“\l ‘\
arithmetic for reproducibility \m

BERKELEY LAB

¢+ Climate and weather simulations are
fundamentally chaotic — if microscopic
changes are made to the current state,
soon the future state is quite different.

¢ In practice, computational results are
altered even if minor changes are
made to the code or the system.

¢ This numerical variation is a major
nuisance for code maintenance.

¢+ He and Ding of LBNL found that by
using double-double arithmetic to
implement a key inner product loop,
most of this numerical variation
disappeared.

Y. He and C. Ding, “Using Accurate Arithmetics to Improve Numerical Reproducibility and Stability in Parallel
Applications,” Journal of Supercomputing, vol. 18, no. 3 (Mar 2001), pg. 259-277.
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Coulomb n-body atomic system ,"“\”l ‘-,-';}

simulations

¢+ Alexei Frolov of Queen’s University in Canada has used high-precision
arithmetic to solve a generalized eigenvalue problem that arises in
Coulomb n-body interactions.

¢ Matrices are typically 5,000 x 5,000 and are very nearly singular.

¢+ Computations typically involve massive cancellation, and high-precision
arithmetic must be employed to obtain numerically reproducible results.

¢ Frolov has also computed elements of the Hamiltonian matrix and the
overlap matrix in four- and five-body systems.

¢ These computations typically require 120-digit arithmetic.

“We can consider and solve the bound state few-body problems which have
been beyond our imagination even four years ago.” — Frolov

A. M. Frolov and DHB, “Highly Accurate Evaluation of the Few-Body Auxiliary Functions and Four-Body
Integrals,” Journal of Physics B, vol. 36, no. 9 (14 May 2003), pg. 1857-1867.

14
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Error bounds in Chebyshev-Sobolev: /\l .
double vs high precision f['””\‘m

multiple precision

102! Error
10% - - . 10% N .
-2 -1 0 1 2 -2 -1 -05 O 1 2
point x point x

Behavior of the theoretical error bounds (T4 a backward error bound and
T5 for the running error bound) and the relative error in the double- and
higher-precision evaluation of the Chebyshev-Sobolev approximation of
degree 50 of the function f(x) = (x+1)2 sin(4x), where the discrete Sobolev
measure have one mass point (c = 1) up to first derivative in the discrete
part of the inner product.

R. Barrio and S. Serrano, “Generation and evaluation of orthogonal polynomials in discrete Sobolev spaces
Il. Numerical stability, J. Comput. Appl. Math., vol. 181 (2005), pg. 299-320.

15



Taylor’s method for the solution of ODEs fr“\rq ".’]}

BERKELEY LAB

Taylor’s method is one of the oldest numerical schemes for solving ODEs, but in
recent years has re-emerged as the method of choice in the computational dynamics
community because of speed to convergence.

Consider the initial value problem y’ = f(t, y). The solution at time t =t is:

y(tO) —- Yo,

1 d" tf(tiz1, yie1)

ti) ~ Yi- ti—1,Yi—1) hi + -
y(ti) yim1 + f(ti-r,yi-1) i+ 4 T

The Taylor coefficients here may be found using automatic differentiation methods.

hi

One significant advantage with Taylor’s method is that it can be easily implemented
using high-precision arithmetic. When this is done, Taylor’s method typically gives
superior results, compared with other available schemes.

A. Abad, R. Barrio, F. Blesa and M. Rodriguez, “TIDES: a Taylor series Integrator for Differential EquationS,”
preprint, 2010.

16



Taylor’s method with high-precision ,:\l

arithmetic rereee '|"||

1 period - TIDES (16 digits)
16 periods -TIDES (300 digits)

~10 0 . First point TIDES (16 digits)
0 10 -20 Yy First-Last point TIDES (300 digits)
X Y Last point TIDES (16 digits)

Numerical integration of the L25-R25 unstable periodic orbit for the Lorenz model
during 16 time periods using the TIDES code with 300 digits, and 1 time periods using

double precision.

DHB, R. Barrio and J. M. Borwein, “High precision computation: Mathematical physics and dynamics,” Applied
Mathematics and Computation, vol. 218 (2012), pg. 10106-10121.

17
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Computing the “skeleton” of periodic
orbits

limit

— N M <

D JUBISUOD Iqode[

coordinate x

D JURISUOD Iqode[

coordinate x

Symmetric periodic orbits (m denotes the multiplicity of the periodic orbit) in the most

chaotic zone of the (7+2) ring problem using double (A) and quadruple (B) precision.

R. Barrio and F. Blesa, “Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems,”

Chaos, Solitons and Fractals, vol. 41 (2009), 560-582.

18



Fractal properties of Lorenz attractors: f“\l \
using high-precision to “zoom in” \""

BERKELEY LAB
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On the first plot, the intersection of an arbitrary trajectory on the Lorenz attractor with the
section z = 27. The plot shows a rectangle in the x-y plane. All later plots zoom in on a tiny
region (too small to be seen by the unaided eye) at the center of the red rectangle of the
preceding plot to show that what appears to be a line is in fact not a line. Very high precision
(hundreds of digits) arithmetic is required for these results.

1. D. Viswanath, “The fractal property of the Lorenz attractor,” Journal of Physics D, vol. 190 (2004), 115-128.
2. D. Viswanath and S. Sahutoglu, “Complex singularities and the Lorenz attractor,” SIAM Review, to appeatr.

19
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Lions-Mercer iterations m ".’i}

BERKELEY LAB ‘

The Lions-Mercer iteration, also known as the Douglas-Rachford or Feinup iteration,
is defined by the procedure: reflect, reflect and average:

z+ Ry (Rp(z))
2
In the simple 2-D case of a horizontal line of height o, we obtain the explicit iteration:

Tpit:=C080p, Yni1:=1Yn+a—sinb,, (0, :=argz,)

x— T(x) =

For 0 < a < 1, spiraling is ubiquitous: (o = 0.95 on left, and 1.0 on right):

CH.

20




Exploring iterations using Cinderella fr} .

i

lterations such as this, as well as many other graphical phenomena, may be
explored using the Cinderella online tool: http://www.cinderella.de.

Two applets have been defined, working with Cinderella, for exploring Lions-
Mercer iterations:

A1. http://users.cs.dal.ca/~jborwein/reflection.html
A2. http://users.cs.dal.ca/~jborwein/expansion.html

For Applet A1, we observed that (see graphic on next slide):

¢ Aslong as the iterate is outside the unit circle the next point is always
closer to the origin;

¢ Once inside the circle the iterate never leaves;

¢ The angle now oscillates to zero and the trajectory hence converges
to(1,0).

21



Iterations with Applet A1 :hl m




Iterations with Applet A2: /a\l |
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Experimental math: Discovering new —
mathematical results by computer m

f

¢+ Compute various mathematical entities (limits, infinite series sums,
definite integrals) to high precision, typically 100-1000 digits.

¢ Use algorithms such as PSLQ to recognize these entities in terms of well-
known mathematical constants.

¢ When results are found experimentally, seek to find formal mathematical
proofs of the discovered relations.

Many results have recently been found using this methodology, both in pure
mathematics and in mathematical physics.

“If mathematics describes an objective world just like physics, there is no

reason why inductive methods should not be applied in mathematics just
the same as in physics.” — Kurt Godel

Mathematics > Cgmputer > SC|ent|f!c > Mathematics
science computing

24
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The PSLQ integer relation algorithm :} ‘i]?

BERKELEY LAB

Let (x,) be a given vector of real numbers. An integer relation algorithm
finds integers (a,) such that

ai1xry + asre + -+ apx, = 0

(or within “epsilon” of zero, where epsilon = 10 and p is the precision).

At the present time the “PSLQ” algorithm of mathematician-sculptor
Helaman Ferguson is the most widely used integer relation algorithm. It
was named one of ten “algorithms of the century” by Computing in Science
and Engineering.

Integer relation detection requires very high precision (at least n*d digits,
where d is the size in digits of the largest a,), both in the input data and in
the operation of the algorithm.

1. H. R. P. Ferguson, DHB and S. Arno, “Analysis of PSLQ, An Integer Relation Finding Algorithm,”
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369.

2. DHB and D. J. Broadhurst, “Parallel Integer Relation Detection: Techniques and Applications,”
Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736.

25
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PSLQ, continued :} )

i

¢+ PSLQ constructs a sequence of integer-valued matrices B, that reduces
the vector y = x * B,,, until either the relation is found (as one of the
columns of B,), or else precision is exhausted.

¢ At the same time, PSLQ generates a steadily growing bound on the size
of any possible relation.

¢ When a relation is found, the size of smallest entry of the y vector
suddenly drops to roughly “epsilon” (i.e. 10-°, where p is the number of
digits of precision).

¢ The size of this drop can be viewed as a “confidence level” that the
relation is real and not merely a numerical artifact -- a drop of 20+ orders
of magnitude almost always indicates a real relation.

Several efficient variants of PSLQ are available:

¢ 2-level and 3-level PSLQ: performs almost all PSLQ iterations with only
double precision, updating full-precision arrays as needed. Hundreds of
times faster than the original full-precision PSLQ algorithm.

¢ Multi-pair PSLQ: dramatically reduces the number of iterations required.
Designed for parallel system, but runs faster even on 1 CPU.

26
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PSLQ discovery: —
The BBP formula for Pi coecesd]

BERKELEY LAB ‘

In 1996, this new formula for ® was found using a PSLQ program:

o

1 ( 4 2 1 1 )
T=y — (0o
16k \8k+1 8k+4 8k+5 8k+6

This formula permits one to compute binary (or hexadecimal) digits of «

beginning at an arbitrary starting position, using a very simple scheme that
can run on any system, using only standard 64-bit or 128-bit arithmetic.

Recently it was proven that no base-n formulas of this type exist for mx,
except n =2m,

1. DHB, P. B. Borwein and S. Plouffe, “On the rapid computation of various polylogarithmic constants,”
Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913.

2. J. M. Borwein, W. F. Galway and D. Borwein, “Finding and excluding b-ary Machin-type BBP formulae,”
Canadian Journal of Mathematics, vol. 56 (2004), pg 1339-1342.

28
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High-precision tanh-sinh quadrature fr} ".’i}

BERKELEY LAB

Given f(x) defined on (-1,1), define g(t) = tanh (st/2 sinh t). Then setting x = g(f)
yields

/f / flg®)g'(t)dt ~ h > w;f(z;),

where x; = g(hj) and w; = g'(hj). Since g'(t) goes to zero very rapidly for large ¢, the
product f(g(t)) g'(1) typlcally is a nice bell-shaped function for which the Euler-
Maclaurin formula implies that the simple summation above is remarkably accurate.
Reducing h by half typically doubles the number of correct digits.

For our applications, we have found that tanh-sinh is the best general-purpose
integration scheme for functions with vertical derivatives or singularities at
endpoints, or for any function at very high precision (> 1000 digits). Otherwise we
use Gaussian quadrature.

1. DHB, X. S. Li and K. Jeyabalan, “A Comparison of Three High-Precision Quadrature Schemes,”
Experimental Mathematics, vol. 14 (2005), no. 3, pg. 317-329.

2. H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical Integration,” Publications of RIMS,
Kyoto University, vol. 9 (1974), pg. 721-741.

29



Ising integrals from mathematical f“\l A
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hysics i
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We recently applied our methods to study three classes of integrals that
arise in the Ising theory of mathematical physics — D, and two others:

O B / / 1 duq du,,
= > L. n
> L (ug + 1/“])) “ tn

D L / / ’L<] Uj —|—uj) du1 dun
L= - L. n
n L (ug + 1/“])) “ tn

2
/ / YY) Aty dis---dt,
U -+ Uj

1<y <k<

where in the lastline u, = t, £, ... {,.

DHB, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” Journal of Physics A: Mathematical
and General, vol. 39 (2006), pg. 12271-12302.

30



Limiting value of C,;: )
What is this number? ceeeeed]

BERKELEY LAB

Key observation: The C, integrals can be converted to one-dimensional
integrals involving the modified Bessel function K,(t):

2" ™7

C,=="— [ ¢tKt) dt

n! J,
1000-digit numerical values, computed using this formula, approach a limit:

C1o24 = 0.63047350337438679612204019271087890435458 707871273234 . ..

What is this limit? We copied the first 50 digits of this numerical value into
the online Inverse Symbolic Calculator (ISC):
http://ddrive.cs.dal.ca/~isc or http://carma-Ix1.newcastle.edu.au:8087/

The result was:

lim C,, = 2 %

n—oo

where y denotes Euler’s constant.

31
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Other Ising integral evaluations found

| .
using high-precision PSLQ “

D, = 1/3

Dy = 8+4m°/3 —27L_5(2)

D, = 4m°/9—-1/6 —7¢(3)/2

EFys = 6—8log2

Es = 10— 2% —8log2 + 32log” 2

E, = 22—82((3)—24log2+ 176log® 2 — 256(log” 2)/3

+167%log 2 — 227% /3
Bs = 42 —1984Lis(1/2) + 18974 /10 — 74¢(3) — 1272¢(3) log 2

+4072 log® 2 — 6272 /3 + 40(72 log 2) /3 + 881og™ 2
+4641og® 2 — 40log 2

where C is the Riemann zeta function and Li(x) is the polylog function. D,, D5 and
D, were originally provided to us by mathematical physicist Craig Tracy, who hoped
that our tools could help identify Ds.

32



The Ising integral E,

We were able to reduce E;, which
is a 5-D integral, to an extremely
complicated 3-D integral.

We computed this integral to 250-
digit precision, using a highly
parallel, high-precision 3-D
quadrature program. Then we
used a PSLQ program to discover
the evaluation given on the
previous page.

We also computed D; to 500
digits, but were unable to identify
it. The digits are available if
anyone wishes to further explore
this question.

s [ )] o
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1=y —2y)’(1 - 2)°(1 — y2)*(1 — ayz)?

(= [4(z + 1)(zy + 1) log(2) (J523T7 v 224y + 1)z 4+ 3)28 — 32 ((y2 +1) 22 4 4(y+
Dz+5)2° +y? (yly+ D22 +3 (32 +1) 22 +4(y+ D)z — 1) a* +y (2 (2 + 42
+5)y2 +4 (2 + 1) y+5z+4)2® + ((-32° — 42+ 1) y* —dzy + 1) 2° — (y(5z + 4)
+4)z = 1))/ [(z = 1)*(xy — 1)*(zyz = 1)°] + [3(y — 1)°y" (= — 1)%2%(y2
—1)22% +2y%2 (3(2 — 1)22%° + 2 (52° + 322 + 32+ 5) y* + (= — 1)z
(522 + 162 +5) y® + (32° + 327 — 2223 — 222 + 32+ 3) y? + 3 (-2 + 2% + 2
24 2—2)y+322 452"+ 52+ 3) 2® +y? (7(z — 1)22495 — 223 (2% + 1527
+152 + 1) y° + 22° (—212" 4 62° + 142° + 62 — 21) y* — 22 (2° — 62" — 2727
—272% — 62+ 1) y® + (72° — 302° + 282" + 542° + 2822 — 302 + 7) y? — 2 (72°
+152% —62° — 622 + 152 + 7) y+ 724 —22% 4222 — 22+ 7) zt =2y (z3 (z3
=922 — 92 + 1) y® + 2% (72" — 142% — 1822 — 142 + 7) y° + 2 (72° + 142" + 3
224327+ 14z 4+ 7) gt + (2% — 142° + 32" + 8427 + 32 — 142+ 1) y® — 3 (32°
+62% — 28 fz2+6z+3)y2 — (924+14z3 714z2+142+9)y+23+722+7z
+1)2® + (22 (112 + 62° — 6627 + 62+ 11) 5 + 22 (52° + 132" — 2% — 27
+132 +5) y° + (112° + 262° + 442" — 662° + 442% + 262+ 11) y* + (62° — 4
2" — 662° — 662> — 4z +6) y® — 2 (332" + 22 — 222° + 22 + 33) y* + (62° + 26
22+ 262+ 6) y+ 1122 +10z + 11) z2 -2 (22 (523 +3224+ 32+ 5) >+ 2 (2224
+52% — 2227 + 52+ 22) y* + (52° + 52" — 262% — 262° + 52+ 5) ¢y + (327
2223 —262% — 222+ 3) y? + (32° + 52 + 52+ 3) y + 52° + 222 + 5) v + 1527 + 22
+2y(z — 1)%(z + 1) + 2¢3(z — 1)%2(2 + 1) + y*2® (152 + 22 + 15) + y (152*
=223 — 9022 — 22 + 15) + 15] / [(z — 1)*(y — 1)*(zy — 1)*(2 — 1)*(yz — 1)?
(zyz = 1] = [Az + Dy + D(yz + 1) (2" + 42 + Dy’ + (22 + 1) ¢
—Az+ Dy +4z (y* — 1) (y*2* — 1) +2° (2®y* —42(z+ 1)y* — (P + 1) °
+4(z+ Dy + 1) — Dlog(z + 1)] / [(z — 1)3z(y — 1)*(yz — 1)%] — [4(y + 1)(zy
+1)(z +1) (2% (22 — 4z — 1)y4+4a:(x+1) (2 =1)y* = (2 +1) (:* —42 - 1)
Yy —d@+1) (22— 1) y+ 22 — 4z — 1) log(zy + 1)] / [z(y — 1)*y(zy — 1)3(2—
D?] - [4(z+1)(yz+ 1) (L3y°z7 + 2%y (da(y + 1) + 5)2° — ay® ((v*+
Da? —4y+ Dz —3)2° —y® (dy(y + Da® +5 (y> + 1) 2® + d(y + Dz + 1) 2*+
y(vP2® —dy(ly+1)2” =3 (P + 1) w — 4y + 1)) 2° + 527y + y° + da(y + 1)
y+1) 22 + (3 + Dy +4)z — 1) log(zyz + 1)] / [ay(z — 1)*2(yz — 1) (zyz — 1)*])]
/@ + 12y +1)%(2y + 1)*(z + 1)%(yz + 1)*(zyz + 1)°] dedydz
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Recursions in Ising integrals :} ‘i]?

BERKELEY LAB

Consider the 2- parameter class of Ising integrals (which arises in QFT for odd k):

/ / 1 duq du,,
T L. n
n L (ug + 1/“3)) m tn

After computing 1000-digit numerlcal values for all n up to 36 and all kup to 75
(performed on a highly parallel computer system), we discovered (using PSLQ)
linear relations in the rows of this array. For example, when n = 3:

0 = 03,0 — 840372 + 21603,4

0 = 2031 —69C53+ 135C]5 5

0 = C32—24C54 +40C56

0 = 32053 —630C5 5+ 945C5 ;

0 = 125C54 —2172C5 ¢ + 3024C5 5

Similar, but more complicated, recursions have been found for all n.

1. DHB, D. Borwein, J. M. Borwein and R. Crandall, “Hypergeometric Forms for Ising-Class Integrals,”
Experimental Mathematics, vol. 16 (2007), pg. 257-276.

2. J. M. Borwein and B. Salvy, “A Proof of a Recursion for Bessel Moments,” Experimental Mathematics, vol. 17

32008 h pg. 223-230.
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Box integrals :} ‘ii}

The following integrals appear in numerous arenas of math and physics:

1 1
Bn(s> = /O /O (T%++Ti)8/2 dfr’l...drr-n

1 1
5/2
An(s) = /O.../O ((?“1—611)2+°"+(7“n—qn)2)/ dry---dr, dqi - dgy

* B,(1) is the expected distance of a random point from the origin of n-cube.
* A (1) is the expected distance between two random points in n-cube.

* B (-n+2) is the expected electrostatic potential in an n-cube whose origin
has a unit charge.

* A (-n+2) is the expected electrostatic energy between two points in a
uniform n-cube of charged “jellium.”

» Recently integrals of this type have arisen in neuroscience — e.g., the
average distance between synapses in a mouse brain.

DHB, J. M. Borwein and R. E. Crandall, “Box integrals,” Journal of Computational and Applied Mathematics,
vol. 206 (2007), pg. 196-208.
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Evaluations of box integrals
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. A
rerrrrr ‘lll

n s B, (s)
any | even s > 0 rational, e.g., : Bo(2) =2/3
1 s # —1 5

> [ A %3

2 -3 —/2

2 -1 21og(1 + v/2)

2 1 V2 + tlog(1 + v2)

2 3 V2 + 35 log(1 + v/2)

2 | s#-2 2 oF (335 1)

3 -5 —5V3— 57

3 -4 —%ﬂarctan%

3 -2 3G + mog(1+ﬂ)+3 Tis(3 — 2v/2)
3 -1 —17+ 3log (24 V3)

3 1 1[ 247T+110g(2+\f)
3 3 2V3 — m— L log (24 V/3)

Here F is hypergeometric function; G is Catalan; Ti is Lewin’s inverse-tan function.
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Elliptic function integrals m ‘i]?
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The research with ramble integrals led us to study integrals of the form:
1
I(ng,n1,n9,n3,n4) = / " K™ () K'™ (2)E™ (z)E"™ (x)dx,
0

where K, K', E, E" are eIIiptic integral functions:

Blo) = / V(1= t2 — 1212)
K'(z) = K(V1-—2?)

- V1 — x2¢t?
E(z) = /o iep dt

E'(z) = E(V1-2?)

J. Wan, “Moments of products of elliptic integrals,” Advances in Applied Mathematics, vol. 48 (2012),
available at http://carma.newcastle.edu.au/jamesw/mkint.pdf.

DHB and J. M. Borwein, “Hand-to-hand combat with thousand-digit integrals,” Journal of Computational
Science, vol. 3 (2012), pg. 77-86, http://www.davidhbailey.com/dhbpapers/combat.pdf.
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Relations found among the | integrals m ‘i]?
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Thousands of relations have been found among the | integrals. For example, among
the class with ny<=D,=4and n, + n, + n; + n, = D, = 3 (a set of 100 integrals),
we found that all can be expressed in terms of an integer linear combination of 8
simple integrals. For example:

2

1 1 1
81/ K (x)E(z)dr = 6/ K3(:U)d:v—24/ 22 K3 (z)dw
0 0 0
1 1
—|—51/ x3K3(a:)da:+32/ o K3 () dx
0 0
1 , 1 1
—243/ P K(2)E(x)K' (2)dx = —59/ K3(x)dx+468/ 2 K3 (x)dx
0 0 0
1 1 1
—|—156/ $3K3($)d$—624/ s K3 (x)dx — 135/ vK(z)E(x)K'(z)dx
0 0 0
1 , 1 1
—20736/ e B (2)K'(z)dxr = 3901/ K3(aj)da:—3852/ r? K3(x)dx
0 0 0
1 1
—1284/ as?’K?’(az)dx+5136/x4K3(a:)dx—2592/ 2? K?(2)K'(z)dx
0 0

972 /O 'K (@) E(2) K (2)dz — 8316 /O oK (2) B(x) K () .
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Algebraic numbers in Poisson potential ,\l A
functions associated with lattice sums  ~=77£ff ""

BERKELEY LAB

Lattice sums arising from the Poisson equation have been studied widely in
mathematical physics and also in image processing.

In two 2012 papers (below), we numerically discovered, and then proved, that
for rational (x, y), the two-dimensional Poisson potential function satisfies

1 cos(mmz) cos(nmy) 1
d2(,y) D M2 & 12 = _loga

T2
m,n odd

where o is an algebraic number, i.e., the root of an integer polynomial:
0=ag+ aja+ axa® + -+ a,a"”

The minimal polynomials for these a were found by PSLQ calculations, with
the (n+1)-long vector (1, a, a?, ..., o) as input, where a = exp (7 ¢,(x,y)).
PSLQ returns the vector of integer coefficients (a,, a4, a,, ..., a,) as output.

1. DHB, J. M. Borwein, R. E. Crandall and J. Zucker, “Lattice sums arising from the Poisson equation,”
manuscript, http://www.davidhbailey.com/dhbpapers/PoissonLattice.pdf

2. DHB and J. M. Borwein, “Compressed lattice sums arising from the Poisson equation: Dedicated to
Professor Hari Sirvastava,” manuscript, http://www.davidhbailey.com/dhbpapers/Poissond.pdf.
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Samples of minimal polynomials found f‘\l A

by PSLQ ]

Minimal polynomial for exp (8 &t ¢,(1/k,1/k))

1+ 52a — 2602 — 12a3 4+ o

1 — 28a + 60 — 28a3 + o

—1 — 196 + 130202 — 1475603 + 15673a* 4+ 42168a° — 111916a° + 82264a”
—35231a® + 198520 — 2954010 — 308at! 4 Tat?

1 — 88a 4 9202 — 872a3 + 1990a* — 872a° + 9208 — 88a” + a8

—1 — 534 + 109230 — 34286403 + 2304684a* — 7820712a° + 1372906808
—22321584a" + 397759860° — 444310440° + 198998820'? + 3546576
—8458020c'? + 400917603 — 273348a1* + 121392a.°

—11385a1% — 34207 + 318

1 — 216 + 86002 — 74403 + 454a* — T44a° + 860a° — 216a” + of

The minimal polynomial for exp (8 ©t $,(1/32,1/32)) has degree 128, with
individual coefficients ranging from 1 to over 10°°. This PSLQ computation
required 10,000-digit precision. See next slide.

40



Degree-128 minimal polynomial for
exp (8 m §,(1/32,1/32))

—1 + 21888a + 589318407 + 150779280640 — 3696628330464 — 287791501240448a° — 30287462976198076a°

+4426867843186404992a7 — 5541569208781 98587888 + 10731545733669133574528a

+120048731928709050250048a ' + 437699921 1577765512726656c' ! — 2790456934581942221253664320 %
+18747586287780118903854334848a* — 6433102268651 88446831485766208a ¢

+12047117225922787728443496655488a % — 1172305951 00328033884939566001384a '8

+667772184328316052814362214365568a° 7 — 41306617347132881440374099326965120'"

+723136262393839647652719462265304320 ¥ — 189142057120586161 2001 8027618091 41088a%"

+38770881 73055347 147059064 10608 7268646402 — 577943965397304779947709633563006963008a %7
+6279796382074485140847650604801614559872a% — 50438007678331243798448849245156136801232a%1
+3058063201333650558125204532241695207397120%° — 14410071719347153367692248481 3827081259129602"
+5554617356232728647085822946642640269497472a7 — 202800244301 70705107000630261 773759070647328a*%

+0954172073999510501 1861 264308551867 164583808a % — 7540814647123154129705591 19390477 1348835487360°0
+62719586468954343658748024351364119220223361280" — 459313493148156253394426902909129484801941501 72032
+280907040806572157908285324812126135484630889344aY — 142727378291697253257629900959675542314911105913603
+60551802996737372319328044432300774082917239087360°" — 21609910039164553316101994301952988793013291 135584
+6543327573659691 4900292838375 7376859599521 4118028807 — 1699281 70513492807 1084170402543261159914387193912960°
+385709310577705218843519196766620216295551031550502a*" — 801233230832691 550861 60891423366176747496324981 57927
+1706210557201030772074402183123327251333271061516160a! — 44212105943513571025057841818312421 74063263551 93849607
+1444419958586632091 56438881 875073835402336197186197762 % — 500684785301 999563884879134179051256657384094261 120324
+16980131345494551492772481335151697683942526 78259080960 1% — 5066120966723856199316334404990939505312036 735461814400 4¢
+13305733882043265651 44545 192834096 788169932897 1856968960 — 3069501638444045841407951 4326450597761 350894894031 38888+
+6226636397646752257692349351 54287263403239801 7736673152 — 11133383491631126059761752734485434504397040890449485504a"
+17601823309919260471943648355479182983209248554083752576a°! — 247230274439950821260540124923236035442268 133440226877 12077
+3114104371767928980808127076661 135572669573591 4995681664057 — 359824303896705515502047999055994 76866868 T6564785218924805
+402925839201 1 789828686349 14506574247 170153728254330768640°5 — 485121882143639762004708688062520089798963 10883132967248a°¢
+69275112214095149977288310632868535966 705567 T28055958400a°7 — 114516830 14856137861 77782096826420996041470345771529041280.%
+195760470467323759800736578743283333538805684 1 288068030720 — 317349593507 10672083451 3764473487031 78928005691 10128603200
+46894424808603 1450001 4652696960001 1 795996266273281 76756480 — 62246710374137890610061 183821 063275240831 2516281 3050089600
+7385164431370031 78837650661 26154683316855500949915197862405 — 781016756680856373187881880706233393197646662361 90613562205
+7385164431370031 78837650661 26154683316855500949915197862405° — 62246710374137890610061 183821 063275240831 2516281 3050089600
+468944248086031450001 4652696960901 1 795996266273281 7675648057 — 317349593507 10672083451 3764473487031 78928005691 101286032005
+195760470467323759800736578743283333538805684 1 288068030720 — 1145168301 4856137861 7778200682642099604147034577152904128a ™
+69275112214095149977288310632868535066 705567 7280559584000 — 485121882143639762004708688962520089798963 10883132967248a 72
+402925839201 1 789828686349 1450657424717015372825433076864a 7 — 3598243038067055 1550204 7999055094 76866868 T6564TRE218092480 74
+31141043717679280808081 27076661 135572669573591 4995681664075 — 24723027443995082126054012492323603544226813344022687712a7¢
+17601823309919260471943648355470182083209248554083752576a 7 — 111333834916311260507617527344854345043970408904494855040 7%
+6226636397646752257692349351 54287263403239801 77366731524 — 3069501638444045841407951 4326450597761 350894894031 38888
+13305733882043265651 44545 192834096 788169932897 185696896 — 5066129966723856199316334404990039505342036735461814400%
+16980131345494551 4927724813351 51697683042526 78259080060 % — 50968478530 10995638848791341 79051 256657384004261 120320
+1444419958586632091 56438881 875073835402336197186197762%% — 4421210594351357 1025057841 8183124217406326355 193849605
+1706210557291030772074402183123327251333271061516160a7 — 801233230832691550861608914233661767474963249815792a™5
+385709310577705218843549196766620216295551031550502a — 1699281705134928971084170402543261 15991 4387193912960
+6543327573659691 4900292838375 7376850599521 411802880 — 21609910939164553316101994301952988793013291 135584072
+6055180299673737231932804443230077408201723908736a”* — 14272737820169725325762090005067554231491 110591360
+2809070408065721 57908285324812126135484630889344a”" — 4593134931481 562533944269029091 20484801941501 726
+6271958646895434365874802435136411922022336128077 — 7540814647123154129705591 193004771 348835487360

+9954172073999510501 1861 264308551867 164583808a% — 202800244301 70705107000630261773750070647328a 00

+ 555461 735623272864 7085822946642640269497472a " — 1441007171934715336769224848138270812591206a 9%
+30580632013336505581 25204532241 695207397120 ™ — 504389076783312437984488492451561368012320 1™
+6279796382074485140847650604801 6145598720 9% — 5779430653973947799477096335630069630080 "9

+3877T0881 73055347 147059064 1060872686464 07 — 18914205712058616120018027618091 4108805
+723136262393839647652749462265304320 ' ¥ — 41306617347 132881440374099326965120" 10

+667772184328316952814362214365568a ' 1 — 1172305951 00328033884939566001384a ! 17

+12047117225022787728443496655488a 1 — 6433102268651884468314857662080 14

+18747586287780118903854334848a 1% — 279045693458194222125366432a° 1°

+437699921 1577765512726656a" 17 <+ 120048731928700050250048 1% 4+ 107315457336691335745280° 1

—5541569208781 98587888 1?0 + 4426867843186404992a %! — 302874629761989760 122

—287791501240448a" % — 3696628330464 177 + 150779280640'%" + 589318406 4 218880177 — 175
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Formal proof versus high-precision ,\l
verification reecees

f

¢ Results such as those mentioned above must still be proven rigorously.

¢ However, strong numerical evidence is often a good impetus to find a
proof — “discovery is 9/10 of the proof.”

What is more firmly established?

¢+ A formally proven result, whose proof required hundreds of pages, which
crucially relies on tens of earlier results by other authors, and which has
only been read in detail by a handful of mathematicians.

¢ A numerically discovered experimental identity, for which no known formal
proof is available, but which has been checked to thousands of digits,
independently on separate computers.
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Cautionary Example :} §

BERKELEY LAB

These constants agree to 42 decimal digit accuracy, but are NOT equal:

/ cos(2x) Hcos r/n)der =
0

0. 3926990816987241548()783()422909937860524645434187231595926
T

8
0.392699081698724154807830422909937860524646174921888227621

Richard Crandall has now shown that this integral is merely the first term of
a very rapidly Convergent series that converges to m/8:

Z/ cos[2(2m + 1)x ]Hcos(x/n)dx

n=1

1. D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein, “Ten Problems in Experimental Mathematics,”
American Mathematical Monthly, vol. 113, no. 6 (Jun 2006), pg. 481-409 .

2. R. E. Crandall, “Theory of ROOF Walks, 2007, available at http://people.reed.edu/~crandall/papers/
ROOF.pdf.
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Limitations of Mathematica and Maple ,\l \
for computational mathematics fff””\‘m

BERKELEY LAB

Mathematica or Maple is our first choice whenever symbolic or numeric
computations are required. However, both have their limitations.

For example, in a study of Mordell-Tornheim-Witten sums (which arise in
mathematical physics), we required high-precision numeric values of
derivatives with respect to the order s of polylogarithm functions:

L.S @) k
0 (‘I)S(Z)’ where Lig(z) = ,; %

Maple is not able to numerically evaluate these derivatives at all.

Mathematica, when asked for 4000 digits, returned only 400 correct digits (at
some arguments).

DHB, J. M. Borwein and R. E. Crandall, “Computation and theory of extended Mordell-Tornheim-Witten sums,”
Mathematics of Computation, to appear, 31 Jul 2012, http://www.davidhbailey.com/dhbpapers/BBC.pdf
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Summary l:'} ".’i}

Large-scale, highly parallel computation places enormous stress on the
numerical reliability and reproducibility of scientific computations.

Double-double or higher precision arithmetic is a practical means of
dealing with these numerical difficulties in many cases.

Many real-world applications have now been identified that require high-
precision arithmetic.

Some research studies, particularly in experimental mathematics and
mathematical physics, require hundreds or even thousands of digits.

Software is now available, mostly for free, to facilitate conversion. In
most cases, one need only change the type of variables that are to be

treated as high-precision variables.
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